skip to main content


Search for: All records

Creators/Authors contains: "Tuckler, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract A new beam dump experiment that utilizes the beam of future high energy electron-positron colliders could be an excellent avenue to search for dark sector particles due to its unprecedented high energy and intensity. We consider heavy neutral leptons (HNLs) as a specific example to demonstrate the sensitivity of searches for dark sector particles at future electron-positron collider beam dump experiments. This includes the study of the reach at the International Linear Collider (ILC), the Cool Copper Collider (C 3 ), and the Compact Linear Collider (CLIC). We comprehensively examine the HNL production and detector acceptance at these electron beam dump experiments. We show that these experiments will probe regions of HNL parameter space, not yet probed by past experiments, as well as by future approved experiments. Our study also motivates a more detailed analysis of heavy meson productions in high-energy electron-nucleon collisions in thick targets. 
    more » « less
  2. Abstract Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S ν DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S ν DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes. 
    more » « less
  3. Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential. 
    more » « less